Carcinogenicity of the aromatic amines: from structure-activity relationships to mechanisms of action and risk assessment.

نویسندگان

  • Romualdo Benigni
  • Laura Passerini
چکیده

Aromatic amines represent one of the most important classes of industrial and environmental chemicals: many of them have been reported to be powerful carcinogens and mutagens, and/or hemotoxicants. Their toxicity has been studied also with quantitative structure-activity relationship (QSAR) methods: these studies are potentially suitable for investigating mechanisms of action and for estimating the toxicity of compounds lacking experimental determinations. In this paper, we first summarized the QSAR models for the rodent carcinogenicity of the aromatic amines. The gradation of potency of the carcinogenic amines depended firstly on their hydrophobicity, and secondly on electronic (reactivity, propensity to be metabolically transformed) and steric properties. On the contrary, the difference between carcinogenic and non-carcinogenic aromatic amines depended mainly on electronic and steric properties. These QSARs can be used directly for estimating the carcinogenicity of aromatic amines. A two-step prediction is possible: (1) estimation of yes/no activity; (2) if the answer from step 1 is yes, then prediction of the degree of potency. The QSARs for rodent carcinogenicity were put in a wider context by comparing them with those for: (a) Salmonella mutagenicity; (b) general toxicity; (c) enzymatic reactions; (d) physical-chemical reactions. This comparative QSAR exercise generated a coherent global picture of the action mechanisms of the aromatic amines. The QSARs for carcinogenicity were similar to those for Salmonella mutagenicity, thus pointing to a similar mechanism of action. On the contrary, the general toxicity QSARs (both in vitro and in vivo systems) were mostly based on hydrophobicity, pointing to an aspecific mechanism of action much simpler than that for carcinogenicity and mutagenicity. The oxidation of the amines (first step in the main metabolic pathway leading to carcinogenic and mutagenic species) had identical QSARs in both enzymatic and physical-chemical systems, thus providing evidence for the link between simple chemical reactions and those in biological systems. The results show that it is possible to generate mechanistically and statistically sound QSAR models for rodent carcinogenicity, and indirectly that the rodent bioassay is a reliable source of good quality data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of rodent carcinogenicity of aromatic amines: a quantitative structure-activity relationships model.

The aromatic amines are widely used industrial chemicals and can be found in tobacco smoke as well as in products generated during cooking. In a previous study, we established quantitative structure-activity relationship (QSAR) models linking the carcinogenic potency of non-heterocyclic carcinogenic aromatic amines to a series of molecular determinants. We also found that QSAR models for carcin...

متن کامل

A mechanism-mediated model for carcinogenicity: model content and prediction of the outcome of rodent carcinogenicity bioassays currently being conducted on 25 organic chemicals.

A hierarchical model consisting of quantitative structure-activity relationships based mainly on chemical reactivity was developed to predict the carcinogenicity of organic chemicals to rodents. The model is comprised of quantitative structure-activity relationships, QSARs based on hypothesized mechanisms of action, metabolism, and partitioning. Predictors included octanol/water partition coeff...

متن کامل

Aromatic amines: mechanisms of carcinogenesis and implications for risk assessment.

Carcinogenic aromatic amines are widespread and need to be regulated. Genotoxic and non-genotoxic effects are both necessary for tumor development. The common mode of action includes metabolic activation, the reaction of metabolites with nucleic acids and cellular macromolecules as well as toxic effects. The dose-response relationship of irreversible DNA damage is linear down to background conc...

متن کامل

QSAR Study for Carcinogenic Potency of Aromatic Amines Based on GEP and MLPs

A new analysis strategy was used to classify the carcinogenicity of aromatic amines. The physical-chemical parameters are closely related to the carcinogenicity of compounds. Quantitative structure activity relationship (QSAR) is a method of predicting the carcinogenicity of aromatic amine, which can reveal the relationship between carcinogenicity and physical-chemical parameters. This study ac...

متن کامل

Hemoglobin binding of arylamines and nitroarenes: molecular dosimetry and quantitative structure-activity relationships.

N-Oxidation and nitroreduction to yield N-hydroxyarylamines are metabolic steps that are crucial for the genotoxic properties of aromatic amines and nitroarenes, respectively. N-Hydroxyarylamines can form adducts with DNA, tissue proteins, and the blood proteins albumin and hemoglobin in a dose-dependent manner. The determination of hemoglobin adducts is a useful tool for biomonitoring exposed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mutation research

دوره 511 3  شماره 

صفحات  -

تاریخ انتشار 2002